### MAI Hoang Bien, PhD

**Associate Professor,**

Faculty of Mathematics and Computer Science

University of Science, VNUHCM

Ho Chi Minh City, Vietnam

Tel: (+84) 287 3089 899

Email:mhbien@hcmus.edu.vn

## Scientific Education

(1) Doctoral degree:

- Year: *September 9, 2011- May 27, 2014.*

- Universities: *Dipartimento di Matematica Universita di Padova, Italy and Mathematisch Instituut, Universiteit Leiden, The Netherlands.*

- Thesis title: *On some classes of modules and their endomorphism rings.*

- Advisors: *1. Prof. A. Facchini.*

*and 2. Prof. H. W. Lenstra.*

(2) Master degree:

- Year: *September, 2005-September, 2008.*

- University: *University of Science, VNU-HCM.*

- Thesis title: *Finitely generated subgroups of linear groups.*

- Advisor: *Prof. Bui Xuan Hai.*

(3) Bachelor degree:

- Year: *2000-2004.*

- University: *University of Science, VNU-HCM.*

- Thesis title: *Finitely generated subnormal subgroups in division rings.*

- Advisor: *Prof. Bui Xuan Hai.*

## Academic & Research Experience

-Division ring.

-Skew group ring.

-Associated graphs.

-(Generalized) Polynomial identities, group identities, rational identities.

## Publication List (selected from 2013-now)

**H. Bien and B. X. Hai**,*On subnormal subgroups in division rings containing a non-abelian solvable subgroups*, Bull. Math. Soc. Sci. Math. Roumanie , 2020, accepted.**H. Bien and D. H. Viet**,*The intersection graph of general linear groups*, Journal of algebra and its applications, 2020. DOI:10.1142/S0219498821500390.**H. Bien and M. Ramezan-Nassab**,*Some algebraic algebras with Engel unit groups*, Journal of algebra and its applications, 2019. DOI: 10.1142/S0219498821500109**T. Deo, M. H. Bien and B. X. Hai**,*On division subrings normalized by almost subnormal subgroups in division rings*, Periodica Mathematica Hungarica**80**(2020), 15-27.**X. Hai, V. M. Trang and M. H. Bien**,*A note on subgroups in division rings that are left algebraic over division subrings*, Arch. Math.**113**(2019), 141-148.**X. Hai, H. V. Khanh and M. H. Bien**,*Generalized power cen-tral group identities in almost subnormal subgroup of GLn(D)*, St. Petersburg Math. J. 2018. Accepted.**H. Bien**,*A note on local commutators in division rings with involution*, Bull. Korean Math. Soc.**56**(2019), 659-666.**Aaghabali and M. H. Bien**,*Certain Simple Maximal Subfields in Division Rings*, Czechoslovak Mathematical Journal**69**(2019), 1053-1060.**H. Bien and M. Ramezan-Nassab**,*Engel subnormal sugroups of skew linear groups*, Linear algebra and its applications, Vol 558 (2018), 74-78.**T. Deo; M. H. Bien and B. X. Hai**,*On weakly locally finite division rings*, Acta Math. Vietnam**44**(2019) 553-569.**Aaghabali; S. Akbari and M. H. Bien**,*Division Algebras with Left Algebraic Commutators*, Algebras and Prepresentation Theory**21**(2018), 807-816.**H. Bien and J. Oinert**,*Quasi-duo di_erential polynomial rings*, J. Algebra Appl.**17**(2018), 1850072 [11 pages].**K. Ngoc; M. H. Bien and B. X. Hai**,*Free subgroups in almost subnormal subgroups of general skew linear groups*, St. Petersburg Math. J.**28**(2017), 707-717.**H. Bien; D. Kiani and M. Ramezan-Nassab**,*Some skew linear groups satisfying generalized group identities*, Comm. Algebra**44**(2016), 2362-2367.**H. Bien**,*Subnormal subgroups in division rings with generalized power central group identities*, Arch. Math. (Basel)**106**(2016), 315-321.**H. Bien**,*The endomorphism ring of a square-free injective module*, Acta Math. Vietnam.**40**(2015), no. 4, 683-687.**Facchini and M. H. Bien**,*Maximal ideals of the endomorphism ring of an injective module*, J. Algebra Appl.**13**(2014), 1350131, 21 pp.**H. Bien**,*On some subgroups of D_ which satisfy a generalized group identity*, Bull. Korean Math. Soc. 52 (2015), 1353-1363.**Facchini and M. H. Bien**,*Loewy modules with finite Loewy invariants and max modules with finite radical invariants*, Comm. Algebra**43**(2015), 2293-2307.**Facchini and M. H. Bien**, Injective modules and divisible modules over hereditary rings, Boll. Unione Mat. Ital.**7**(2015), 299-308.**H. Bien**,*On normal subgroups of D* whose elements are periodic modulo the center of D of bounded order*, Int. Electron. J. Algebra**16**(2014), 66-71.**H. Bien and D. H. Dung**,*On normal subgroups of division rings which are radical over a proper division subring*, Studia Sci. Math. Hungar.**51**(2014), 231-242.