Position | Dean of the Faculty of Mathematics and Computer Science |
Citation name | Mai Hoang Bien; M. H. Bien; Bien, M. H.; Hoang Bien, Mai; Bien, Mai Hoang https://orcid.org/0000-0003-4377-3786 https://mathscinet.ams.org/mathscinet/MRAuthorID/984312 |
Field of Professional | 1. Areas of expertise: – Field: Natural Sciences – Specialization: Mathematics – Expertise: Algebra and Number Theory 2. Research direction: – Non-commutative rings – Linear group on division ring |
Year of appointment title of Associate Professor | 2019 |
Style of citation | MLA Citation Style |
Academic background | In 2004 VNUHCM-University of Science BSc. in Mathematics and Computer Science In 2008 VNUHCM-University of Science MSc. in Algebra and Number Theory In 2014 University of Padua (Università degli Studi di Padova) and Leiden University (Universiteit Leiden) PhD. in Mathematics |
Name Languages | ASSOC.PROF MAI HOÀNG BIÊN mhbien@hcmus.edu.vn Vietnamese, English |
---|
PUBLICATION
[1] T. T. Deo; M. H. Bien and B. X. Hai, On the radicality of maximal subgroups in GL_n(D), J. Algebra 365 (2012), 42–49
[2] B. X. Hai; T. T. Deo and M. H. Bien, On subgroups in division rings of type 2, Studia Sci. Math. Hungar. 49 (2012), no. 4, 549–557
[3] M. H. Bien and D. H. Dung, On normal subgroups of division rings which are radical over a proper division subring, Studia Sci. Math. Hungar. 51 (2014), no. 2, 231–242
[4] M. H. Bien, On normal subgroups of D∗ whose elements are periodic modulo the centre of D∗ of bounded order, Int. Electron. J. Algebra 16 (2014), 66–71
[5] A. Facchini and M. H. Bien, Injective modules and divisible modules over hereditary rings, Boll. Unione Mat. Ital. 7 (2015), no. 4, 299–308
[6] A. Facchini and M. H. Bien, Loewy modules with finite Loewy invariants and max modules with finite radical invariants, Comm. Algebra 43 (2015), no. 6, 2293–2307
[7] M. H. Bien, On some subgroups of D∗ which satisfy a generalised group identity. Bull. Korean Math. Soc. 52 (2015), no. 4, 1353–1363
[8] A. Facchini and M. H. Bien, Maximal ideals of the endomorphism ring of an injective module, J. Algebra Appl. 13 (2014), no. 4, 1350131, 21 pp
[9] M. H. Bien, The endomorphism ring of a square-free injective module, Acta Math. Vietnam. 40 (2015), no. 4, 683–687
[10] M. H. Bien, Subnormal subgroups in division rings with generalised power central group identities, Arch. Math. (Basel) 106 (2016), no. 4, 315–321
[11] M. H. Bien; D. Kiani and M. Ramezan-Nassab, Some skew linear groups satisfying generalised group identities, Comm. Algebra 44 (2016), no. 6, 2362–2367
[12] N. K. Ngoc; M. H. Bien and B. X. Hai, Free subgroups in almost subnormal subgroups of general skew linear groups, St. Petersburg Math. J. 28 (2017), 707-717
[13] M. H. Bien and J. Oinert, Quasi-duo differential polynomial rings, J. Algebra Appl. 17, 1850072 (2018) [11 pages]
[14] M. Aaghabali; S. Akbari and M. H. Bien, Division Algebras with Left Algebraic Commutators, Algebras and Prepresentation Theory 21 (2018), 807-816.
[15] T. T. Deo; M. H. Bien and B. X. Hai, On weakly locally finite division rings, Acta Math. Vietnam. 44 (2019), 553–569
[16] M. H. Bien and M. Ramezan-Nassab, Engel subnormal subgroups of skew linear groups, Linear algebra and its applications, Vol. 558 (2018), 74-78.
[17] M. Aaghabali and M. H. Bien, Certain Simple Maximal Subfields in Division Rings, Czechoslovak Mathematical Journal 69 (2019), 1053-1060.
[18] M. H. Bien, A note on local commutators in division rings with involution, Bull. Korean Math. Soc. 56 (2019) 659-666.
[19] B. X. Hai, H. V. Khanh and M. H. Bien, Generalised power central group identities in almost subnormal subgroup of GLn(D), St. Petersburg Math. J. Accepted
[20] B. X. Hai, V. M. Trang and M. H. Bien, A note on subgroups in division rings that are left algebraic over division subrings, Arch. Math. 113 (2019), 141-148
[21] T. T. Deo, M. H. Bien and B. X. Hai, On division subrings normalised by almost subnormal subgroups in division rings, Periodica Mathematica Hungarica 80 (2020), 15-27
[22] M. H. Bien and M. Ramezan-Nassab, Some algebraic algebras with Engel unit groups, J. Algebra Appl. 20 (2021), 2150010
[23] M. H. Bien and D. H. Viet, The intersection graph of general linear groups, J. Algebra Appl. 20 (2021), 2150039
[24] M. H. Bien and B. X. Hai, On subnormal subgroups in division rings containing non-abelian solvable subgroups, Bull. Math. Soc. Sci. Math. Roumanie 63 (2020), 149-16.
[25] M. H. Bien, B. X. Hai and V. M. Trang, Algebraic commutators with respect to subnormal subgroups in division rings, Acta Mathematica Hungarica, 163 (2021), 663–681.
[26] M. Ramezan-Nassaba and M. H. Bien, Locally solvable unit group of crossed products, Communication in Algebra, 48 (2020), 5247-5253.
[27] B. X. Hai, C. M. Nam, and M. H. Bien, On locally finite skew group algebras, Mathematical Notes 108 (2020), 769–774
[28] M. H. Bien, M. Ramezan-Nassab, D. H. Viet, *-identities on units of division rings, Communication in algebra 49 (2021), 3010-3019
[29] L. Q. Danh, M. H. Bien, B. X. Hai, Permutable subgroups in $\GL_n(D)$ and applications to locally finite group algebras, Vietnam Journal of Mathematics, 2021, DOI: 10.1007/s10013-021-00513-8.
[30] M. H. Bien, M. Ramezan-Nassab, Additive mappings and identities on unit groups of algebraic algebras, J. Algebra Appl., 2021. DOI: 10.1142/S021949882250116X
[31] B. X. Hai, T. H. Dung, M. H. Bien, Almost subnormal subgroups in division rings with generalised algebraic rational identities, J. Algebra Appl., 2021. DOI: 10.1142/S021949882250075X
[32] B. X. Hai, C. M. Nam, M. H. Bien, Automorphism groups of vector spaces with generalised group identities, Linear and Multilinear Algebra, 2021. DOI: 10.1080/03081087.2021.1939257
[33] M. Aaghabali and M. H. Bien, Subnormal subgroups and self-invariant maximal subfields in division rings, J. Algebra 586 (2021), 844-856.
[34] M. Ramezan-Nassab, M.H. Bien, and M. Akbari-Sehat, Algebras whose units satisfy a ∗-Laurent polynomial identity, Arch. Math. 117 (2021), 617–630. DOI: 10.1007/s00013-021-01671-4
[35] B. X. Hai, B. X. B. Minh, L. V. Chua and M. H. Bien, Low Diameter Algebraic Graphs. In: Nešetřil J., Perarnau G., Rué J., Serra O. (eds) Extended Abstracts EuroComb 2021. Trends in Mathematics, vol. 14, 465-471. Birkhäuser, Cham. (Conference paper) https://doi.org/10.1007/978-3-030-83823-2_7
[36] T. N. Son, T. H. Dung, N. T. T. Ha and M. H. Bien, On decompositions of matrices into products of commutators of involutions, Electronic Journal of Linear Algebra 38 (2022), 123-130
[37] V. M. Trang, M. H. Bien, T. H. Dung and B. X. Hai, On the algebraicity of bounded degrees in division rings, Communications in Algebra 50 (2022), 4178-4187.
[38] M. H. Bien, B. X. Hai and D. T. Hue, On the unit groups of rings with involution, Acta Mathematica Hungarica, 166 (2022), 432–452.
[39] L. V. Chua, M. H. Bien, B. X. Hai, A note on skew linear groups of finite rank, Arch. Math., 119 (2022), 113–120.
[40] M. H. Bien, T. H. Dung, N. T. T. Ha and T. N. Son, Decompositions of matrices over division algebras into products of commutators, Linear Algebra and its Applications, Vol. 646 (2022), 119-131.
[41] M. H. Bien, T. H. Dung and N. T. T. Ha, A certain decomposition of infinite invertible matrices over division algebras, Linear and Multilinear Algebra, (2022), DOI: 10.1080/03081087.2022.2091508.
As the leader of the projects
Đề tài ĐHQG-HCM, loại C. Đồng nhất thức nhóm suy rộng trong đại số và sự tồn tại nhóm con tự do trong các đại số nhóm, 2018-2019.
(Transl.) Topic of VNUHCM, type C. Generalized group identities in Algebra and the existence of free subgroups in group Algebras, 2018-2019.